92,864 research outputs found

    On numerical integration and computer implementation of viscoplastic models

    Get PDF
    Due to the stringent design requirement for aerospace or nuclear structural components, considerable research interests have been generated on the development of constitutive models for representing the inelastic behavior of metals at elevated temperatures. In particular, a class of unified theories (or viscoplastic constitutive models) have been proposed to simulate material responses such as cyclic plasticity, rate sensitivity, creep deformations, strain hardening or softening, etc. This approach differs from the conventional creep and plasticity theory in that both the creep and plastic deformations are treated as unified time-dependent quantities. Although most of viscoplastic models give better material behavior representation, the associated constitutive differential equations have stiff regimes which present numerical difficulties in time-dependent analysis. In this connection, appropriate solution algorithm must be developed for viscoplastic analysis via finite element method

    Complications of percutaneous endoscopic gastrostomy in dogs and cats receiving corticosteroid treatment

    Get PDF
    BACKGROUND: Corticosteroid treatment is commonly required in veterinary patients for treatment of inflammatory, immune‐mediated, neurologic, and neoplastic diseases, which also may require assisted enteral nutrition via percutaneous endoscopic gastrostomy (PEG). OBJECTIVE: To evaluate complications associated with PEG use in dogs and cats receiving corticosteroid treatment. ANIMALS: Forty‐two animals were included in the study: 12 dogs and 2 cats in the steroid group and 26 dogs and 2 cats in the control group. METHODS: Medical records, between January 2006 and March 2015, were reviewed. Patients were included if the PEG tube was in use for at least 24 hours and if complete medical records were available. Patients were assigned to the control group if they were not treated with corticosteroids during PEG use or to the steroid group if they had received corticosteroids during PEG tube use. Complications were classified as minor, moderate, and major in severity. Maximum severity complication rate was compared between groups. RESULTS: The general prevalence of complications was found to be similar between groups (P = .306), but in the steroid group, 43% of the cases developed a major severity complication compared with 18% of the control group (P = .054). CONCLUSION AND CLINICAL IMPORTANCE: Owners of dogs and cats receiving corticosteroids, in which PEG is planned, should be counseled about possible complications beyond those associated with PEG tube usage alone

    Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction

    Get PDF
    This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs) by using genetic algorithms (GA). The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate) for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer) ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC) was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.). Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.This research was supported by the National Science Council (NSC) of Taiwan (Grant no. NSC98-2915-I-155-005), the Department of Education grant of Excellent Teaching Program of Yuan Ze University (Grant no. 217517) and the Center for Dynamical Biomarkers and Translational Medicine supported by National Science Council (Grant no. NSC 100- 2911-I-008-001)

    Energy dependence of Normal Branch Oscillation in Scorpius X-1

    Full text link
    We report the energy dependence of normal branch oscillations (NBOs) in Scorpius X-1, a low-mass X-ray binary Z-source. Three characteristic quantities (centroid frequency, quality factor, and fractional root-mean-squared (rms) amplitude) of a quasi-periodic oscillation signal as functions of photon energy are investigated. We found that, although it is not yet statistically well established, there is a signature indicating that the NBO centroid frequency decreases with increasing photon energy when it is below 6-8 keV, which turns out to be positively correlated with the photon energy at the higher energy side. In addition, the rms amplitude increases significantly with the photon energy below 13 keV and then decreases in the energy band of 13-20 keV. There is no clear dependence on photon energy for the quality factor. Based on these results, we suggest that the NBO originates mainly in the transition layer.Comment: 6 pages, 4 figure

    Combustion: Structural interaction in a viscoelastic material

    Get PDF
    The effect of interaction between combustion processes and structural deformation of solid propellant was considered. The combustion analysis was performed on the basis of deformed crack geometry, which was determined from the structural analysis. On the other hand, input data for the structural analysis, such as pressure distribution along the crack boundary and ablation velocity of the crack, were determined from the combustion analysis. The interaction analysis was conducted by combining two computer codes, a combustion analysis code and a general purpose finite element structural analysis code

    Basic physical and chemical processes in space radiation effects on polymers

    Get PDF
    The effects of space ionizing radiation on polymers is investigated in terms of operative physical and chemical processes. A useful model of charged particle impact with a polymer was designed. Principle paths of molecular relaxation were identified and energy handling processes were considered. The focus of the study was on energy absorption and the immediately following events. Further study of the radiation degradation of polymers is suggested
    corecore